Raymond

CS & Math @ SCU

B.S. Computer Science & Mathematics

Exploring the intersection of computer science and mathematics through interactive visualizations and elegant solutions.

Loading telemetry...

Interests & Projects

Exploring the convergence of mathematical theory and software engineering

Fields of Interest

Quantum Computing

Exploring quantum algorithms, superposition principles, and their applications in computational complexity theory. Fascinated by the intersection of linear algebra and quantum state spaces.

Security & Cryptography

Deep interest in cryptographic protocols, zero-knowledge proofs, and secure system design. Building practical tools to understand encryption algorithms and security primitives.

Data Science & Machine Learning

šŸ† HiMCM Outstanding Award (Top 1%)

Mathematical modeling competition - Demonstrated advanced statistical analysis and predictive modeling

Applying mathematical rigor to extract insights from complex datasets. Experienced in statistical modeling, neural networks, and optimization algorithms.

Featured Projects

Interactive TypeScript Editor

A feature-rich code editor built with shadcn-tiptap-editor. Supports syntax highlighting, auto-completion, and real-time collaboration.

TypeScriptReactTiptap
main.ts

šŸ’” This is a live editor - try typing!

H4H-fishman: Climate Awareness Game

Led a 5-person team to deliver an educational climate awareness game during Hack for Humanity 2024. Built with Unity and C#, featuring interactive gameplay mechanics to teach environmental conservation.

Team Lead

5 Members

Duration

24 Hours

UnityC#Game DesignTeam Leadership

Cryptography Toolkit

Python-based utilities for exploring classical and modern encryption algorithms

āœ“ RSA & AES Encryption
āœ“ Hash Functions (SHA, MD5)
āœ“ Cryptographic Attacks (Padding Oracle)
āœ“ Simplified Bitcoin & Blockchain
View on GitHub

DrakeTyporaTheme

A minimalist, developer-focused theme for Typora markdown editor with elegant typography and syntax highlighting

# Heading 1
**Bold Text**
`code snippet`
- List item
Default
2K+
Downloads
⭐ 15+
GitHub Stars
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)
f(x)=1σ2Ļ€eāˆ’12(xāˆ’Ī¼Ļƒ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
apāˆ’1≔1(modp)a^{p-1} \equiv 1 \pmod{p}
y2=x3+ax+by^2 = x^3 + ax + b
eiπ+1=0e^{i\pi} + 1 = 0
ρ(āˆ‚uāˆ‚t+uā‹…āˆ‡u)=āˆ’āˆ‡p+Ī¼āˆ‡2u+f\rho ( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} ) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}
f^(ξ)=āˆ«āˆ’āˆžāˆžf(x)eāˆ’2Ļ€ixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx
iā„āˆ‚āˆ‚tĪØ(r,t)=H^ĪØ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t)
āˆ®āˆ‚Ī£Fā‹…dr=∬Σ(āˆ‡Ć—F)ā‹…dS\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
H(X)=āˆ’āˆ‘i=1nP(xi)log⁔2P(xi)H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)

Professional Experience

Building impactful solutions across academia and industry

CS Teaching Assistant

Santa Clara University

June 2024 - Jan 2025

Led weekly labs for 30+ students in core CS courses. Developed comprehensive grading rubrics and provided detailed feedback on programming assignments.

PythonLab InstructionAssessment

Software Development Intern

Shanghai Sincere Tech

June 2025 - Aug 2025

Built AI-powered Q&A platform using Neo4j graph database. Achieved 40% efficiency boost in AI pipelines through optimized data structures. Full-stack development with Vue3 and Spring Boot.

Neo4jVue3Spring BootAI Integration

Software Engineer

ICEA Chess

June 2025 - Present

Leading frontend and backend team development. Reverse-engineered legacy PHP backend to Spring Boot microservices. Implemented Swiss pairing tournament logic for competitive chess platform.

ReactSpring BootSystem ArchitectureTeam Leadership

CS Tutor

Santa Clara University

Sept 2025 - Present

Guiding undergraduates in data structures and algorithms, deconstructing complex concepts into digestible insights. Fostering critical thinking through one-on-one mentorship.

Data StructuresAlgorithmsMentorshipTeaching

Future Horizons: Bridging Math & CS

Research & Innovation

2025 and Beyond

Researching Quantum Algorithms, Post-Quantum Cryptography, and Formal Verification. Applying rigorous mathematical proofs to build the next generation of secure software.

Quantum AlgorithmsPost-Quantum CryptoFormal VerificationMathematical Proofs

Let's Connect

Interested in collaborating on quantum computing, cryptography, or innovative software projects? Let's talk.

Click to copy email address

My Current Time

00:00:00 AM
Loading...
PST • Pacific Time

Ā© 2025 Raymond Zha • Santa Clara University

Built with Next.js, GSAP, and Three.js